
Interactive, Repair-Based Planning and
Scheduling for Shuttle Payload Operations

G. Rabideau, S. Chien,
T. Mann, C. Eggemeyer

Jet Propulsion Laboratory
4800 Oak Grove Drive

Pasadena, CA 91109-8099
{gregg.rabideau, steve.chien,
tobias.mann, curt.eggemeyer}

@jpl.nasa.gov

J. Willis, S. Siewert
University of Colorado

Colorado Space Grant College
Campus Box 520

Boulder, CO 80309
{jwillis, siewerts}

@rodin.colorado.edu

P. Stone
Carnegie Mellon University

Computer Science Department
Pittsburgh, PA 15213-3891

pstone@cs.cmu.edu

Abstract—This paper describes the DATA-
CHASER Automated Planner/Scheduler
(DCAPS) system for automatically
generating low-level command sequences
from high-level user goals. DCAPS uses
Artificial Intelligence (AI)-based search
techniques and an iterative repair framework
in which the system selectively resolves
conflicts with the resource and temporal
constraints of the DATA-CHASER shuttle
payload activities.

TABLE OF CONTENTS

1. INTRODUCTION

2. DATA-CHASER PAYLOAD

3. USER OPERATION

4. MODEL REPRESENTATION

5. AUTOMATED PLANNER/SCHEDULER

6. SYSTEM INTEGRATION

7. SUMMARY AND RELATED WORK

1. INTRODUCTION

Command sequence generation for spacecraft
operations can be a laborious process
requiring a great deal of specialized
knowledge. Command sets can be large, with
each command performing a low-level task.
There may be many interactions between the
commands due to the use of resources. In
addition, due to power and weight limitations,
the resources available on-board spacecraft

tend to be scarce. Because of this complexity,
tools to assist in planning and scheduling
spacecraft activities are critical to reducing the
cost and effort of mission operations.

This paper describes a general system that
uses Artificial Intelligence Planning and
Scheduling technology to automatically
generate command sequences for the DATA-
CHASER shuttle payload operations. The
DATA-CHASER Automated
Planner/Scheduler (DCAPS) architecture
presented supports direct, interactive
commanding, rescheduling and repair,
resource allocation, and constraint
maintenance.

The DCAPS search algorithm was developed
based on the “iterative repair” technique used
in [1]. Basically, this technique iteratively
selects a schedule conflict and performs some
action in an attempt to resolve the conflict.
Using a repair algorithm, DCAPS is naturally
well-adapted for human interaction.
Therefore, the scheduler can be used as a tool
to assist payload command sequencing. With
the use of this tool, sequencing becomes
simple enough to be accomplished by
nonspacecraft and sequencing experts, such as
the mission scientists. This allows the scientist
to become directly involved in the command
sequencing process. Following any changes in

spacecraft state or user-defined goals, the
repair algorithm allows simple rescheduling
that avoids disrupting the original schedule as
much as possible. Finally, the highly
restrictive payload resources and constraints
are consistently monitored and conflicts
avoided automatically.

The DCAPS system is being developed for
operation of the DATA-CHASER shuttle
payload, which is being managed by students
and faculty of the University of Colorado at
Boulder. DATA-CHASER is a science
payload, with a primary focus on solar
observation. The main activities for the
payload involve science instrument
observations, data storage, communication,
and control of the power subsystem. Science
is performed using three solar observing
instruments, Far Ultraviolet Spectrometer
(FARUS), Soft X-ray and Extreme Ultraviolet
Experiment (SXEE), and Lyman-alpha Solar
Imaging Telescope (LASIT), that are imaging
devices at various spectra.

The payload resources include power, tape
storage, local memory, the three instruments,
and the communication bus. DATA-CHASER
is also constrained by externally-driven states
such as the shuttle orientation, which affects
when certain science activities can be
scheduled. Payload activities must be
sequenced while avoiding or resolving
conflicts with resources and temporal
constraints.

When using the DCAPS system, there are
three modes of operation. First, by simply
providing a small set of high-level science and

engineering goals, an initial schedule can be
generated. The goals, which describe high-
level mission objectives, are automatically
translated into a sequence of executable
activities. The second phase offers an
interactive scheduling session. Using the
repair-based scheduler, the user can work with
the low-level activities while maintaining
consistency with resources and constraints.

After making any change in the schedule, the
user can give one simple command to resolve
all conflicts in the current schedule. A
schedule free of conflicts, however, may not
be the highest quality schedule. In the final
stage, the user can call on the optimizer to
generate several additional solutions based on
preference information and select the best.

The main scheduling algorithm of the
planner/scheduler is the repair-based search
algorithm. Using this algorithm, the scheduler
first collects all of the conflicts in the current
schedule and classifies them based on the
resource being violated and the culprit
activities associated with the conflict. After
choosing a conflict to repair, the scheduler
must select an action to perform in an attempt
to resolve the conflict. Actions include
moving, adding, and deleting activities. If the

DATA

CHASER

FARUS SXEE LASIT

CPU RAM DAT

Figure 1: DATA-CHASER payload

action resolves the conflict, the scheduler
iterates on the resulting schedule. Otherwise,
the scheduler tries a different action for
resolving the persistent conflict.

The remainder of this paper is organized as
follows. First, we describe the DATA-
CHASER shuttle payload and mission
objectives. Next, we discuss the different
ways in which the DCAPS system can be used
to command the DATA-CHASER payload.
Next, we describe the model representation.
We then go into detail about the DCAPS
approach to automated command generation.
Then, we describe how DCAPS fits in to the
overall flight and ground system architecture
for the DATA-CHASER mission. Finally, we
discuss related work and conclusions.

2. DATA-CHASER PAYLOAD

DATA-CHASER consists of two synergetic
projects (see Figure 1), DATA and CHASER,
which will fly as a Hitchhiker (HH) payload
aboard STS-85 on the International Extreme
Ultraviolet Hitchhiker Bridge (IEH-2) in July
1997 [2]. A technology experiment, DATA
(Distribution and Automation Technology
Advancement) seeks to advance semi-
autonomous, supervisory operations.
CHASER (Colorado Hitchhiker and Student
Experiment of Solar Radiation) is a solar
science experiment that serves to test DATA.
The DATA technologies support cooperative
operations distributed between different
geographic sites as well as between humans
and machines, on-board autonomy, human
control, and ground automation.

CHASER is comprised of three coaligned
instruments that take data in the far and
extreme ultraviolet wave-lengths. The first
and oldest of these instruments (17 years old)
is FARUS, which takes a continuous spectrum
from 115 nm to 190 nm with a resolution of
.12 nm. LASIT takes images of the full solar
disk of the sun in the Lyman-alpha

wavelength (121.6 nm) with a Charge Injected
Device imager. The final instrument in the
scientific package, SXEE, consists of four
photometers, each having a different metallic
coating so as to enable them to look at
different wavelengths between 1 and 40 nm.
The objective of these instruments is to
measure the full disk solar ultraviolet
irradiance and obtain images of the sun in the
Lyman-alpha wavelength, providing a
correlation between solar activity and
radiation flux as well as an association of
Lyman-alpha fluxes with individual active
regions of the sun.

The flight segment of the DATA-CHASER
project consists of a canister that is equipped
with a Hitchhiker Motorized Door Assembly
(HMDA), which houses the instruments and
their support electronics. The second canister
contains the flight computer for the payload as
well as the 2 GB Digital Audio Tape (DAT)
drive that is used to store all data that is
collected during the mission. The payload data
is also sent to the ground system through both
low rate (available 90% of the time, at 1200
bps) and medium rate (available when
scheduled, at 200 kbps). The payload is also
capable of receiving commands sent from the
ground system when uplink is available.

During the mission, the DATA-CHASER
payload will be operating in four different
modes. Most of the time, when DATA-
CHASER is powered, it will be in a passive
mode where it is monitoring its state and
notifying the ground of any changes. During
the time in the mission when the orbiter is
scheduled to point the bay at the sun, the
DATA-CHASER payload will shift into solar
active mode where all instruments take data.

The data is both written to the DAT drive on
board and downlinked to the ground system
for immediate data analysis. Several times
during the mission, DATA-CHASER will

take data while not pointing at the sun. This
data is used for testing various portions of the
DATA experiment with nonsolar pointing
data in addition to being used for instrument
calibration.

One of the consequences of flying on the
shuttle system is that shuttle resources are
limited, and their availability is subject to
change every 12 hours. These resources
include access to uplink and downlink
channels, and time that your payload is
allowed to operate. In addition to these
resources, any given payload may also have
environmental constraints as to how much
contamination the payload can take. Another
example is thermal constraints, such as
maximum solar point time.

STS-85, the flight that DATA-CHASER
payload is scheduled to fly on, is one of the
most complicated flights that the shuttle has
flown to date. In addition to the DATA-
CHASER payload, there are four other
payloads sharing the same HH bridge. In
addition to the IEH-2 bridge, there is another
HH bridge, a pallet payload, and a Spartan
deployable satellite. Needless to say the
shuttle pointing requirements are considerably
tight.

In addition to modeling what the internal
constraints and resources of the payload are,
DCAPS must also search the shuttle flight
plan for times when we are allowed to
operate, downlink our data, uplink new
command sets, and when we have to protect
the scientific instruments from contamination
events.

DATA-CHASER is an interesting scenario for
scheduling because of the complex data and
power management involved in the science
gathering. An automated scheduler must find
an optimal “data taking” schedule, while
adhering to the resource constraints. In

addition, the scientists would like to perform
dynamic scheduling during the mission. As an
example, the summary data may indicate the
presence of a solar flare. If this occurs,
scientists have different requirements and
goals, such as higher priorities on certain
instruments or longer integration times. These
new goals may require a different schedule of
activities.

3. USER OPERATION

The DATA-CHASER Automated Planner /
Scheduler will be part of the DATA-CHASER
mission operations software. It will be a
ground-based intelligent tool used for
generating scheduled commands for uplink to
the payload. The user’s manual [3] can be
found at the Jet Propulsion Laboratory. There
are three phases of operating the DCAPS
system: a goal satisfaction phase, an
interactive repair phase, and an optimization
phase.

Goal Satisfaction

The first phase of scheduling in DCAPS
involves generating an initial schedule from a
set of high-level, user-defined goals. The
scientist or engineer simply requests one or
more of the predefined goals, and the
scheduler will generate the low-level activities
that satisfy the goals. For example, the
scientist can simply make a request for solar
observations during all solar viewing periods.
Given this goal, the scheduler will create and
position the instrument data-take activities and
their supporting activities.

Goal satisfaction is a way of generating an
initial schedule. Goals are parameterized, and
create activities in positions relative to certain
schedule events or parameters. In this way, the
same goals can be requested for different
initial states. This makes them more flexible
than alternate ways of creating an initial
schedule, such as simply loading activities

from a file. For example, the initial state in
DATA-CHASER contains shuttle maneuver
activities. These activities determine the solar
viewing periods of the payload. The solar
observation goals are based relative to these
solar views, and therefore, are applicable to
any maneuver sequence.

Interactive Repair

In the second phase of scheduling, the user
has the opportunity for interacting with the
schedule at a more detailed level. The scientist
or engineer can view the activities at several
levels of abstraction. The graphical user
interface (GUI) can display activities from the
highest level, as a single event, down to the
lowest level, showing the detailed steps that
make-up the activity.

The user can also modify the schedule by
moving, adding, or deleting activities, as well
as changing activity parameters. For example,
the scientist might want to delete a LASIT
data-take and replace it with a FARUS or
SXEE data-take. Or, perhaps he/she may
simply want to change the target of some
data-take, from a solar scan to an earth scan.

Although the user has the capability of
making these types of adjustments, he/she
does not need to worry about the various
interactions, constraints, or resource usage of
the activities being modified. This information
is monitored by DCAPS, and changes are
propagated to the dependent objects. The
results of the modification, including any
conflicts, are displayed by the GUI. In
addition, when the user introduces scheduling
conflicts, DCAPS can resolve them
automatically.

DCAPS can be called upon at any time to
resolve any conflicts residing in the schedule.
Conflicts are violations of resource capacities
or temporal constraints. In this way, the user
does not need to be very informed, careful, or

specific about his/her requests. For example, a
scientist can move a data-take activity without
concern for its power usage. Or, a general
request for data-takes can be made, without
specifying the exact times for the activities to
occur. Although these changes or requests
may cause one or more conflicts, DCAPS can
resolve these conflicts with one simple
command.

Optimization

Finally, the third phase of DCAPS operation
is schedule optimization. After resolving all
conflicts, the schedule may still contain
violations of user preferences. These
preference violations can be repaired in a
manner similar to repairing regular conflicts.
The main difference is that the modeler must
explicitly represent the types of violations and
general mechanisms for repairing them. As an
example, considered an engineer’s desire to
have all data written to permanent storage at
the end of the mission. Having data in the
RAM at the end of the schedule is a violation
of a preference, rather than a violation of a
resource.

Preferences can also be expressed in a
schedule evaluation function. In the
optimization phase, DCAPS can score valid
schedules based on the evaluation function
developed by the modeler. One simple
evaluation function may give higher scores to
schedules with more science observations.
Due to the fact that DCAPS utilizes a
stochastic scheduling procedure, more optimal
schedules can be found by simply running the
scheduler many times and retaining the
schedule with highest score.

4. MODEL REPRESENTATION

In order to use either Plan-IT II standalone or
the full DCAPS system, the user must write a
software model of the mission activities and
spacecraft resources. This process involves

defining a set of objects and how they interact.
These definitions are then used by the
scheduler to create instances of the objects.

Model Objects

The basic objects in the PI2 sequencing tool
are activities, resources, slots, and
dependencies.

Activities—Activities are used to model the
events that happen that affect the DATA-
CHASER payload, and the actions that the
DATA-CHASER payload can take. All
activities have some basic components: a
duration, a list of slots, and a list of slot-value
assignments. In addition, certain types
(described below) have a list of subactivities.
For these activities, the user can also define a
set of temporal constraints between the
subactivities. Next, we describe in more detail
the four basic types of activities: events, steps,
step-activities, and activities.

Events are used to model activities that do not
occur in a fixed relation to other activities
(e.g. Tracking and Data Relay Satellite
System (TDRSS) contacts) and are not part of
an activity hierarchy.

Steps are the “leaf” nodes in the activity
hierarchy tree. In other words, they do not
contain any subactivities. Steps cannot be
instantiated without their parents and are used
to model the activities at the lowest level of
detail. For instance, we model an activity
called CHASER-heating, which consists of
two steps, CHASER-heater-on and CHASER-
heater-off.

Step-activities are used to model activities at a
middle level of abstraction. They can contain
steps, but must also have parent activities. In
DCAPS, we model an activity SXEE-Data-
Take, which models the SXEE instrument
opening its aperture and taking a scan. In this
case, there is a step-activity called SXEE-

Scan-Step, which has sensor read steps and
cannot be instantiated by itself.

Activities are used to model activities at the
highest level of abstraction. They are the
“root” nodes in the hierarchy tree, containing
subactivities, but no parent activity. The
activity and event objects are what the
scheduler can instantiate, and Plan-It II
provides methods to access the varying levels
of abstraction.

Resources—Resources define the various
physical resources and the constraints they
impose. Resources come in essentially five
varieties: state, concurrency, depletable,
nondepletable, and simple.

State resources are used to model the systems
in the DATA-CHASER payload that have
states associated with them. For each state
resource, the modeler must specify the
possible values that the state can be. Most of
the systems have at least one state variable,
which is whether or not they are activated.
The orientation of the payload is also modeled
as a state variable.

Concurrency resource constraints are used to
model rules that stipulate that an activity
either must occur with another activity or
cannot occur with another activity. One
relationship that is modeled with a
concurrency resource is the requirement that a
downlink or uplink can only occur during
contact with a TDRSS satellite. This is
modeled as a resource that is present when
there is TDRSS contact activity, and required
when there is a downlink or uplink activity.

Depletable resources are used to model
resources with a fixed quantity, such a fuel or
RAM. Activities can use some finite amount
of a depletable resource, which may or may
not be restorable. The amount used by the
activity is persistent to the end of the

schedule. In addition, the modeler must
specify a maximum capacity for each
depletable resource. In DCAPS, RAM is
modeled as a depletable resource. Science
observations produce data and use some
amount of the depletable resource. Other
activities, such as a transfer to permanent
storage, may restore this resource.

Non-depletable resources are used to model
resources which have a limit to the usage at
any one time, but are reset at the end of the
activity that consumes the resource. Similar to
depletable resources, nondepletables are
assigned a maximum capacity. Resources like
power are modeled with nondepletable
resources.

Simple resources are used to model devices
that can only be used by one activity at a time.
For instance, each of the instruments on board
DATA-CHASER, FARUS, SXEE, and
LASIT, are capable of taking only one image
at a time and are modeled with simple
resources. Simple resources are essentially
nondepletable resources with an capacity of
one.

Slots—Slots are parameters of activities that
allow them to affect resources. They are
defined separately but referenced inside
activity definitions along with a value
assignment for each slot. In the slot definition,
the modeler must specify which resource it
affects. The main types of slots are: info slots,
simple slots, availability slots, choice slots,
amount slots, and state slots.

Info slots are for embedding text information
in activities. They are merely placeholders and
do not have any effect on scheduling.

Simple slots are included in activity type
definitions in order to model usage of a simple
resource. For instance, there is a slot called
FARUS, which is included in activity

definitions of activities which use the FARUS
instrument. This info slot models the usage of
the FARUS instrument.

Availability slots are the slots that allow
activities to provide or require the presence of
a concurrency resource. There is a slot in
DCAPS called TDRSS-coverage and a slot
called TDRSS-coverage-needed. Both affect
the TDRSS-coverage resource. TDRSS
activities have the TDRSS-coverage slot, and
downlink activities have the TDRSS-
coverage-needed slot. TDRSS activities can
be placed anywhere and provide the presence
of the resource. Downlinks can only be placed
in intervals where TDRSS activities are
present, since this activity possesses the slot
that requires the TDRSS resource to be
present.

Amount slots come in two varieties: amount
and reset-amount. Amount slots reduce a
depletable or nondepletable resource, and
reset-amount slots increase a depletable or
nondepletable resource. Amount slots do not
have to be associated with a resource,
however. In DCAPS, we have an amount slot
called Rate, which is how we model the
different bit transfer rates in activities that
move data, such as a downlinks or DAT reads
and writes. To find the amount of data an
activity transfers, we multiply the rate by the
duration of the activity.

There are also two types of state slots: state-
users and state-changers. State-user slots
require the presence of a certain state in a state
resource, and state-changer slots change the
state of a state resource. The modeler must
define the set of possible states. In DCAPS,
there is a state resource that models the shuttle
orientation, which can be solar, earth, lunar,
or deep-space. Solar science activities require
the shuttle orientation state to be solar, while
shuttle maneuver activities change the
orientation state.

Dependencies—Plan-It II provides the ability
to set up links that allow one object to affect
another object. These links are called
dependencies. There are several types of
dependencies based on the types of objects it
relates: slot-to-resource, slot-to-slot, slot-to-
activity start or duration, activity start or
duration-to-slot, and resource-to-resource
dependencies.

Slot-to-resource dependencies are the default
dependencies in the Plan-It II system. They
allow a slot to affect a resource, and are
created automatically when a slot is defined
with the same name as a resource.

Slot-to-slot dependencies allow the value of
one slot to affect the value of another slot. For
instance, in the DAT-transfer activity, there
are two slots, one that models the removal of
data from the RAM, and one that models the
addition of data to the DAT (digital tape). In
DCAPS, a dependency has been defined that
sets the value of one of the slots equal to the
value of the other slot (so that the amount
subtracted from RAM is never different than
the data added to the DAT).

Activity start time or duration-to-slot
dependencies and slot-to-activity start time or
duration dependencies facilitate the modeling
of convenient relationships among Plan-It II
objects. For instance, the DAT-transfer has a
slot called Rate, which is the rate at which
data can be moved from the RAM to the
DAT. We have a dependency that sets the
amount of data that is removed from the RAM
equal to the rate multiplied by the duration.
An example of a dependency that goes from
slot to duration is a dependency which links
the selected target for a science image to the
length of time it takes for the instrument to
scan. The duration of a FARUS scan varies
depending on its use of the shuttle orientation
state (solar, earth, or lunar).

Resource-to-resource dependencies allow one
resource to affect another resource directly.
This is very convenient for modeling power
usage, since power consumption can be tied to
activities or states. For instance, power
consumption by the heater can be linked to an
activity (e.g., the activation of the heater), or
to a state of the heater (e.g., when the state of
the heater is “on,” more power is used).

Hierarchy

The modeler can create an activity hierarchy
when defining the activities. All this means is
that activities can have subactivities which can
also have subactivities, and so on. Only the
activity at the top of the hierarchy can be
instantiated in the schedule. When an activity
is created, all of its subactivities are created
automatically. Therefore, the scheduler must
schedule the entire hierarchy if it wants to
schedule one of the components.

In modeling the DATA-CHASER shuttle
payload, decisions had to be made about
where to put activities in the activity
hierarchy. We decided to model those
activities that could be scheduled arbitrarily
(and had no subactivities) as events not in a
hierarchy. Some activities that were modeled
as events were TDRSS contacts, shuttle
venting, and very simple activities that could
occur independently, like relay activations and
HMDA operations (opening and closing).

If one event always occurred in some fixed
temporal relationship to another, then we
modeled it as an activity in a hierarchy. For
instance, a SXEE data-take consists of a
number of calibrations, a door opening
activity, several scans, a door closing activity,
then a data transfer to the RAM buffer. We
modeled all of these activities as steps in an
activity called SXEE-Data-Take.

Common Strategies

There were a number of strategies that we
employed in the modeling process that made
modeling the DATA-CHASER payload
simpler.

One strategy that we employed was to reduce
the number of states that state variables could
have through discretization. For instance,

spacecraft orientation is best modeled with a
real valued 3 dimensional vector. But for
modeling purposes, we reduced the number of
possible orientations to a discrete set of four:
solar, lunar, earth, and deep space.

Another strategy that we employed in
modeling DATA-CHASER was to separate
one component into several. For instance,
there was really only one memory buffer that
was used for storing several types of data, but
we modeled it as though it were three buffers:
one for science data, one for engineering data,
and one for storing data to be downlinked. We
also did this with power. There are really only
two power sources, DATA power and
CHASER power, but we modeled them as
though there were different power resources
for each of the science instruments and several

of the other subsystems. This allowed us to
track power usage more conveniently.

5. Automated PLANNER/SCHEDULER

The DATA-CHASER Automated Planner /
Scheduler produces a complete, valid schedule
of payload operation commands from a
model, initial state, and set of high-level
goals. In addition, it can input intermediate,
invalid schedules (resulting from user
changes) and produce a similar, but valid
schedule. Finally, the scheduler can take
several valid schedules, score them, and select
the most optimal schedule.

The planner/scheduler consists of two main
parts, the Plan-IT II (PI2) sequencing tool [4]
and the schedule reasoner (see Figure 2). PI2
was written by William C. Eggemeyer and
originally designed as an “expert assistant
sequencing tool.” PI2 includes a GUI that
allows for easy manipulation of the schedule.
In addition, it serves as an activity/resource
database that supplies valuable information to
the schedule reasoner. PI2 supports complex
monitoring and reasoning about activities and
the various constraints between them. The
schedule reasoner uses Artificial Intelligence
(AI) techniques to automatically generate new
schedules, repair existing faulty schedules,
and optimize valid schedules. PI2 provides
information about resource availability and
conflicts; the scheduler must decide which
activities to use to resolve the conflicts and
where to place the activities temporally. The
two components work together to provide
easy and fast sequencing of mission activities.

Schedule Data-Base

In the DCAPS system, PI2 is used primarily
as a “schedule database” and resource
constraint checker. It was originally developed
as a graphical sequencing tool. Activities and
resources are displayed on a graphical output.
An activity represents some mission event that

Schedule Reasoner

Plan-IT II

GUI Schedule DB

Figure 2: DCAPS architecture

Schedule
Generator

Schedule
Repairer

Schedule
Optimizer

User
Model

occurs over a period of time and uses some of
the mission resources. A resources represents
some limited available material whose usage
is modeled as discrete blocks over time.

For each type of activity and resource, PI2
displays a timeline, which represents the
behavior of that activity/resource type over a
period of time. When activities are created,
they are placed at a specified time on the
timeline. Resources used by that activity are
updated to reflect the additional usage. In
addition to schedule visualization, PI2
provides an easy-to-use input interface for
modifying the schedule. Moving activities is
as simple as a click-and-drag with a mouse.

PI2 helps ease the burden on sequencers by
continually monitoring all activities in the
sequence. As activities are added or moved,
the change in resource usage is automatically
updated, and the new resource profiles are
displayed. With this information available, the
user can immediately see the effects of a
schedule change on the mission resources. For
each resource, PI2 also monitors any conflicts
that are occurring on the resource.

Conflicts are time intervals where the
limitations of the resource have been
exceeded. These conflict intervals are
highlighted in red to flag their existence for
easy identification. Finally, PI2 monitors any
dependencies that have been defined between
activities and resources. The values of specific
parameters of activities and resources may be
functionally dependent on values of other
parameters. PI2 automatically keeps these
parameter values consistent.

PI2 also helps out by serving as an activity
and resource database, producing/accepting
information to/from a sequencer. The
functional interface to PI2 has been extended
to better assist an automated sequencer. A
basic set of “fetch” functions have been

developed to quickly retrieve information
about conflicts and the resources and activities
involved in the conflict. For example, an
interface function has been written to fetch the
legal times where an activity can occur in the
schedule. Here, “legal times” refers to
positions where no conflicts are caused by any
of the resources used by the given activity.

In addition to fetching information about the
current state of the schedule, the user will
need to be able to change the current state in
attempt to fix or optimize the schedule. Some
basic primitive functions are provided by PI2
to allow an external system to add and move
activities, change their duration, etc. These
primitives make up the set of actions that a
scheduler can take when trying to resolve
conflicts.

Schedule Reasoner

The second major component of DCAPS is
the automated schedule reasoner. This is the
next step in automating and simplifying the
spacecraft command sequencing process.
There are three parts to the schedule reasoner:
a schedule generator, a schedule repairer, and
a schedule optimizer. First, the schedule
generator will transform a set of user-defined,
high-level goals into a valid sequence of low-
level commands. Second, the schedule
repairer will automatically restore the
consistency of the sequence after arbitrary
user interaction by rescheduling using repair
actions. The scheduler repairer iteratively
attempts to resolve each conflict, which
involves making choices on what to repair and
how to repair it. Finally, the schedule
optimizer can optimize a valid schedule to
increase the scientific return.

Schedule Generator—The first step in
sequencing spacecraft commands is to come
up with an initial schedule of events for each
phase of the mission. This process has been
partially automated in DCAPS with the

schedule generator. Expressing schedules and
partial schedules to be generated is done
through user defined goals. There are two
ways in which user goals are handled in
DCAPS. First, initial science and engineering
goals are handled with parameterized
scheduling functions. Each function
implements a goal. For example, there is a
“Place-Power” function that schedules power
switching activities in appropriate places
based on some engineering parameters.
Parameters may include such things as a
minimum time between switching, or a power
on during a particular state of a different
resource.

Second, science goals can also be expressed
through data-take requests, which do not have
to be a part of the initial schedule generation.
For example, a scientist can request ten
additional scans from a particular instrument
to occur any time during some phase of the
mission. This type of general request does not
include specific locations or necessary
supporting activities. The scheduler will
simply place them at random positions and
allow any conflicts to be resolved by the
automated repairer.

Schedule Repairer—The generated initial
schedule may still violate some of the
spacecraft constraints. Also, the scientists and
engineers might feel that their goals were not
completely satisfied, and may need to interact
with and modify the generated schedule. By
modifying the schedule, new conflicts may be
introduced. Therefore, we need some way of
automatically resolving any existing conflicts
in the schedule, while disrupting the current
state of the schedule as little as possible.
Having the process automated allows the user
to be less careful, and therefore spend less
time on the details of sequencing the
activities. When general requests or changes
have been made, all conflicts can be resolved

by executing one simple command to invoke
the schedule repairer.

Before describing the schedule repairer, we
must present a few definitions. A “hard
conflict,” or just “conflict,” is a violation of
one of the resource constraints. A conflict
occurs over a certain time period and is caused
by activities called “culprits.” For example, if
the power capacity is exceeded from time t1 to
time t2, then a conflict exists from time t1 to
time t2, and the culprits are any activities that
use power during this time (see Figure 3). A
“soft conflict” is a violation of one of the
user's high level goals. “Hard conflicts” are
violations of legal constraints, while “soft
conflicts” are violations of user preferences.
“Choice points” are places in the scheduling
algorithm when a decision must be made. For
example, when there are many conflicts to
resolve, the scheduler must decide which
conflict to resolve first. A “hard choice,” or
just “choice,” is a decision made solely on the
basis of possible hard conflicts. It may be
decided, for example, not to place an activity
at a certain time because new conflicts will be
added as a result of that placement. A “soft
choice” is a decision made on the basis of user
preferences or heuristics with the hopes of
generating a more optimal schedule. An
example of a user preference is a priority
scheme on certain activities. One heuristic
may be to move lowest-priority culprits to the
nearest legal position.

There are three possible actions to take in
attempt to resolve a conflict: move, add, or

Figure 3: Conflicts

Power
Capacity

Culprits

Conflict

t1 t2

delete an activity. The “move” action involves
moving one of the culprits of the conflict to a
positions that will either resolve the conflict or
at least ensure that the moved activity is no
longer a culprit. Some conflicts can be
resolved by adding a new activity. These
activities usually provide some resource that
was previously not available. Finally, a
conflict can also be resolved by simply
deleting the culprits. This is obviously not a
preferred method and is only used as a last
resort.

The resolution of a conflict greatly depends on
the type of resource that is in violation. There
are five different types of conflicts
corresponding to the five types of resources.
A state conflict occurs when an activity
requires the resource to be in a state which it
is not. The culprits in this type of conflict are
all of the activities that require the incorrect
state and the activity that changed the resource
to the incorrect state. Several possibilities for
resolving a state conflict include moving the
culprits to another interval where the required
state is present or adding an activity that will
change the state of the resource to the required
state.

A concurrency conflict is when an activity
requires the presence of the resource during a
time for which it is absent. The culprits in this
type of conflict are all of the activities that
require the presence of the resource. To
resolve a concurrency conflict, the scheduler
can move the culprits to an interval where the
resource is present or add an activity that
provides the presence of the resource.

A depletable conflict means that the activities
of the schedule have used too much of the
resource. In this type of conflict, the culprit is
the activity that caused the resource to
overflow during the time that it first
overflows. Some depletable resources have
“resetter” activities and this sort of conflict
can be resolved by adding an activity that
“resets” the available resource. For example, a
downlink activity will free up space in the
downlink buffer. A nondepletable conflict is
when activities overuse a resource during a
particular time interval. The culprits in this
type of conflict are all of the activities that use
the resource during the conflict interval. This
sort of conflict can be resolved by moving or
deleting culprits. There are no activities in the
DATA-CHASER model that can add to a
nondepletable resource.

Simple conflicts occur when two or more
activities use the same resource at the same
time. This type of conflict can only be
resolved by moving culprits.

For any type of initial schedule, the schedule
repairer must find the correct activities to
move, add, or delete and position them
temporally in such a way that no conflicts
remain. The scheduler makes decisions
randomly except at certain choice points
where heuristics are used. The scheduler relies
on some interface functions to PI2 that
describe the conflicts in the current schedule,
describe the activities that could resolve a
conflict, and manipulate the schedule. We first
describe the random scheduler, followed by
the heuristic enhancements that facilitate
scheduling within the DATA-CHASER
domain. The ultimate task

Iterative Repair Algorithm

The following is the algorithm for the schedule repairer written in a C-like pseudo-code.

Resolve-Conflicts ()
{

iterations = 1

conflicts = GetConflicts()
Loop while (length(conflicts) > 0 && iterations <= max-iterations) {

conflict = ChooseConflict(conflicts)
method = ChooseMethod(conflict)
case (method) {
‘move’

culprit = ChooseCulpritToMove(conflict)
duration = ChooseDuration(conflict, culprit)
start-time = ChooseStartTime(conflict,culprit,duration)
success = MoveCulprit(conflict,culprit,start-time)

‘add’
activity = ChooseActivityToAdd(conflict)
duration = ChooseDuration(conflict, activity)
start-time = ChooseStartTime(conflict,activity,duration)
success = AddActivity(conflict,activity,start-time)

‘delete’
culprit = ChooseCulpritToDelete(conflict)
success = DeleteCulprit(conflict,culprit)

}
progress = GetProgress()
if not(success || progress) then UndoLastAction()
conflicts = GetConflicts()
iterations = iterations + 1

}
}

of the system is to find the best place to
schedule the activities so as to maximize the
utility of the schedule. In the basic scheduler,
all choices are made randomly from the list of
options unless otherwise specified.

The algorithm is a simple iterative loop over
the conflicts in the schedule. First, a conflict is
selected from the list of current conflicts. An
attempt is made to resolve the chosen conflict.
Next, a method for resolving the conflict is
chosen. The repair action will depend on
which method has been selected. If “move” is
chosen, then a culprit must be picked from the
list of culprits in the conflict. A duration and
start time are chosen for the culprit, and the
culprit is moved to the new location. If “add”
is the chosen method, then the repairer must
decide which activity type to instantiate.
Again, a duration and start time must be
chosen for the new activity, and the activity is
inserted at the chosen time. If the repairer
chooses to “delete” an activity, then it simply
must choose an activity to delete, and delete
it. After the chosen action is performed, the
schedule repairer checks to see if progress was

made. We define progress as either decreasing
the number of conflicts, decreasing the
number of culprits, or decreasing the duration
of the conflicts.

If the action did not succeed in resolving the
conflict, or progress was not made, then the
action is “undone.” Otherwise, the new set of
conflicts are found, and the loop counter is
incremented. This process continues until all
conflicts are resolved, or the loop counter
exceeds a user-defined maximum bound. For
every choice point in the algorithm, where a
selection must be made from a list of
possibilities, the schedule repairer is allowed
to backtrack to that point. What this means is,
that if a particular choice fails, the schedule
repairer may choose another from the list
before giving up. If all choices fail, then a
previous decision must have been incorrect,
and the repairer can backtrack to the
preceding choice point. All choice points,
including the decision on whether or not to
backtrack, are heuristic decisions and may
customized to a particular domain.

Schedule Optimizer—The schedule optimizer
is composed of additional knowledge supplied
by the user and utilized by the other
components of the scheduler. There are three
ways to optimize a schedule: using preference
heuristics at search choice points in the
schedule repairer, specifying a set of “soft
conflicts” for the repairer, and using an
evaluation function to score results from
multiple runs of the schedule generator and
repairer.

A preference heuristic, or “soft choice,” can
be made at any decision in the repair search.
For example, when deciding where to move a
conflict causing activity, the user might prefer
to move that activity to a position closest to its
current position. This will help the scheduler
avoid unnecessary disruption to the existing
schedule. The existing schedule, after all, may
have been produced by the user in an attempt
to optimize the schedule.

Preferences can also be expressed using what
we referred to as “soft conflicts.” A soft
conflict is a way of specifying a preferred
value for a particular resource, possibly at a
particular time. For example, having any
scanned data that has not been stored on the
tape at the end of the mission, is considered a
soft conflict. This is not a hard conflict,
because the data is not exceeding the buffer
size. However, the scientist would prefer that
all of the data be written to the tape at the
mission’s end, rather than leaving it in the on-
board memory. After the schedule repairer
handles all of the hard conflicts, it continues
by iteratively addressing all of the soft
conflicts.

The third approach to optimization involves
scoring several resulting schedules and
choosing the one with the highest score. The
evaluation function is domain dependent and
would have to be written separately for each
application. Some basic scoring, however,

will be similar across applications. For
example, most science spacecraft are mainly
concerned with collecting the largest number
of images as possible. A simple evaluation
would give a higher score to schedules with
greater amounts of collected data. Once we
have the evaluation function, we need to be
able to produce several different schedules
from the same goals and initial state.

This can be done by either changing the
heuristics or by running the scheduler with a
different random seed. Some heuristics may
work better than others, and it is often
difficult to tell which is the best for a
particular application. Therefore, it may be
necessary to resort to empirical tests. After
running the scheduler on different heuristics,
we can simply choose the set of heuristics
which generates the schedule with the highest
score. After choosing the heuristics, the
scheduler can be run many times with
different random seeds. At choice points
where there is no heuristic for choosing from
the list of possibilities, the scheduler makes a
random decision. With different random
seeds, these decisions will be different, and
the resulting schedule will be different. Using
the evaluation function, we can assign a score
to each, and choose the schedule with the
highest score. This procedure will not
necessarily uncover the optimum schedule,
but it will help find a more optimal schedule.

Heuristics—The general search and decision
making described above would be futile
without expert support and guidance.
Heuristics have been developed and
incorporated into DCAPS to help guide the
search to a valid and more optimal schedule.
This guidance knowledge comes from both
domain experts and scheduling experts. There
are three basic classes of heuristics used in
DCAPS: selection, pruning, and backtracking
heuristics.

Selection heuristics involve deterministically
sorting or selecting from a list of possibilities
at a choice point in the search. The selection is
usually based on some property of the objects
being considered. For example, when
choosing a culprit to move in order to resolve
a power conflict, one heuristic might choose
the culprit that uses the most amount of
power. Using this heuristic might resolve the
conflict faster. Another successful heuristic
used in DCAPS was one that sorted the
possible locations for activity placement by
the number of conflicts the activity would
cause when placed in that location. This basic
approach has been referred to as the “min-
conflicts” heuristic [5]. The min-conflicts
algorithm we use is interesting, and it is
worthwhile to go into detail.

For each resource used by an activity, we
query the database for the legal times where
the activity can be placed without violating
the resource constraint. Then, each legal
interval is assigned an initial score of one.
Next, we intersect two sets of intervals that
resulted from two of the resources, using a
special “scored” interval intersection (see
Figure 4). The scored intersection of intervals
A and B results in four possibilities: an
interval with a score of A for positions where
A exists and B does not, an interval with a
score of B where B exists and A does not, an
interval with a score of A plus the score of B
where the two intervals intersect, or no
interval where neither A nor B exist. The
result of this intersection is then intersected
with the third set of intervals.

This process continues until each set of
intervals for each resource has been
intersected. The result is a set of scored
intervals, where the score represents the
number of resources that will not be violated
if the activity is placed in that position. Using
these intervals, we can choose a position with

the highest score, in other words, the position
with the fewest conflicts.

Another class of heuristics used in DCAPS are
the pruning heuristics. These heuristics
remove some of the possibilities for a given
selection in attempt to make the choice easier
and faster. For example, after finding the
scored intervals for an activity, we may not
want to try all possible positions. One
possibility is to only try positions with the
highest score or least number of conflicts.
This process may speed up scheduling because
the scheduler will only try a few positions
before realizing this attempt is futile and
giving up to try something different. Too
much pruning, however, may remove
possibilities that could be useful. In the above
example, some of the pruned intervals may
have included positions that, if the activity
was placed there, would have improved the
schedule. A more conservative approach
might be to prune only those intervals that
would cause more conflicts than are currently
in the schedule. These intervals cannot
possibly be positions that could improve the
schedule.

Finally, backtracking heuristics are used to
help determine when to continue working on
the same problem and when to move on to a
different problem. At each choice point, we
have a list of possibilities. If we try one
possibility, and it fails, we can continue and
try the next possibility, or move on to a

Figure 4: Min-conflicts with scored interval intersection

 2 1 0 2 3 2

Legal Intervals

Scored
Intersection

Resource 1

Resource 2

Resource 3

different choice point. Heuristics can be used
to help make two types of decisions about
backtracking: deciding on “action failures”
and deciding on “selection failures.” First, the
notion of an “action failure” is not clear and
requires an approximate definition. Success is
not simply resolving the chosen conflict.
When, resolving a conflict, and action attempt
may fix the chosen conflict, but cause several
other conflicts.

Therefore, success can be thought of as
improving the schedule. But how much? And
what defines an improvement? Our current
definition of progress includes observing the
change in the number of conflicts, the change
in the number of culprits, and the change in
the duration of the conflicts. Checking the
progress of an action can be used as a
heuristic for determining whether to accept
the action, or try a different one. The second
opportunity for heuristics comes when
deciding if there is a “selection failure.” While
trying and failing on a list of possibilities for a
choice point, at some point we must decide
that the previous choice was a failure.
Heuristics can help with this decision also.

6. SYSTEM INTEGRATION

DCAPS will be integrated into the End-to-End
Mission Operations System (EEMOS) that is
currently being developed for the DATA-
CHASER project as a prototype for the Pluto
Express EEMOS [6]. Currently the DATA-
CHASER EEMOS consists of seven parts:
Command and Control, Fault/Event Detection
Interaction Reaction (F/EDIR), DATA/IO
(Data handling), the Ground Database, the
Graphical User Interface, the software testbed,
and finally the planning and scheduling
system (DCAPS).

The command and control system that we are
using, System Command Language (SCL,
also known as Spacecraft Command
Language), integrates procedural

programming with a real-time, forward-
chaining, rule-based system. DCAPS
interfaces with SCL through DATA/IO by
sending script scheduling commands that are
to be scheduled either on the flight or ground
system. This interface is implemented by
mapping PI2 activities to SCL scripts that
were written prior to flight and can be
scheduled or event-triggered by activating
rules. These scheduling and rule activation
commands are then sent to DATA/IO which
forwards that list to the SCL Compiler. Once
compiled, the list is sent to the payload
through the next available uplink.

DCAPS is also interfaced with the ground
EEMOS database, O2. O2 is an object-
oriented database that will be used to store all
mission data and telemetry that is downlinked
by the payload. It will also store a command
history. Through DATA/IO, DCAPS will
request current payload status data in the form
of sensor values in the telemetry history. It
will also request lists of all commands
uplinked during a given time interval. These
are used by DCAPS to infer command
completion status as well as to get the current
state of the payload so that a new schedule can
be created.

During mission operations, approximately
every four hours or so, DCAPS will be asked
by an operator to generate script scheduling
commands and rule activations for the next six
hours according to its schedule. Once this list
is finished, it is reviewed by the Mission
Operations staff on duty. If judged to be
correct, scheduling and rule activation
commands will be sent to DATA/IO during
the next available uplink window.

If during that six hour period there is a major
change in the NASA activities, DCAPS will
ask if the users want to update the schedule
script on-board. Due to the fact that SCL
currently has no scheduled script instance

identification, this will involve descheduling
all remaining scripts in the queue and then
rescheduling them. This is acceptable if the
user did not schedule any scripts
independently of DCAPS. If he/she did, and
DCAPS reschedules its list, the user’s
scheduled commands will be lost. If the user
accepts it, DCAPS will generate a updated
list, ask the user to verify it, and then
deschedule rest of the old list and schedule the
new list. Future versions of SCL will most
likely support scheduling instances, therefore
alleviating these problems.

7. SUMMARY AND RELATED WORK

Iterative algorithms have been applied to a
wide range of computer science problems
such as traveling salesman [7] as well as
Artificial Intelligence Planning [8,9,10,11].
Iterative repair algorithms have also been used
for a number of scheduling systems. The
GERRY/GPSS system [1,12] uses iterative
repair with a global evaluation function and
simulated annealing to schedule space shuttle
ground processing activities. The Operations
Mission Planner (OMP) [13] system used
iterative repair in combination with a
historical model of the scheduler actions
(called chronologies) to avoid cycling and
getting caught in local minima. Work by
Johnston and Minton [5] shows how the min-
conflicts heuristic can be used not only for
scheduling but for a wide range of constraint
satisfaction problems. The OPIS system [14]
can also be performing iterative repair.
However, OPIS is more informed in the
application of its repair methods in that it
applies a set of analysis measures to classify
the bottleneck before selecting a repair
method.

In summary, DCAPS represents a significant
advance from several perspectives. First,
from a mission operations perspective,
DCAPS is important in that it significantly
reduces the amount of effort and knowledge

required to generate command sequences to
achieve mission operations goals. Second,
from the standpoint of Artificial Intelligence
applications, DCAPS represents a significant
application of planning and scheduling
technology to the complex, real-world
problem of spacecraft commanding. Third,
from the standpoint of Artificial Intelligence
Research, DCAPS mixed initiative approach
to initial schedule generation, iterative repair,
and schedule optimization represents a novel
approach to solving complex planning and
scheduling problems.

ACKNOWLEDGMENTS

This work was performed by the Jet
Propulsion Laboratory, California Institute of
Technology, under contract with the National
Aeronautics and Space Administration.

REFERENCES

[1] M. Zweben, B. Daun, E. Davis, and M. Deale,
“Scheduling and Rescheduling with Iterative Repair,”
in Intelligent Scheduling, Morgan Kaufman, San
Francisco, 1994.

[2] DATA-CHASER Documents, Annual Report.

[3] G. Rabideau, S. Chien, T. Mann, C. Eggemeyer, P.
Stone, and J. Willis, “DCAPS User’s Manual,” JPL
Technical Document D-13741, 1996.

[4] W. Eggemeyer, “Plan-IT-II Bible”, JPL Technical
Document, 1995.

[5] M. Johnston and S. Minton, “Analyzing a Heuristic
Strategy for Constraint Satisfaction and Scheduling,”
in Intelligent Scheduling, Morgan Kaufman, San
Francisco, 1994.

[6] S. Siewert and E. Hansen, “A Distributed
Operations Automation Testbed to Evaluate System
Support for Autonomy and Operator Interaction
Protocols,” 4th International Symposium on Space
Mission Operations and Ground Data Systems, ESA,
Forum der Technik, Munich, Germany, September,
1996.

[7] S. Lin and B. Kernighan, “An Effective Heuristic
for the Traveling Salesman Problem,” Operations
Research Vol. 21, 1973.

[8] S. Chien and G. DeJong, "Constructing Simplified
Plans via Truth Criteria Approximation," Proceedings
of the Second International Conference on Artificial
Intelligence Planning Systems, Chicago, IL, June
1994, pp. 19-24.

[9] K. Hammond, “Case-based Planning: Viewing
Planning as a Memory Task,” Academic Press, San
Diego, 1989.

[10] R. Simmons, “Combining Associational and
Causal Reasoning to Solve Interpretation and Planning
Problems,” Technical Report, MIT Artificial
Intelligence Laboratory, 1988.

[11] G. Sussman, “A Computational Model of Skill
Acquisition,” Technical Report, MIT Artificial
Intelligence Laboratory, 1973.

[12] M. Deale, M. Yvanovich, D. Schnitzius, D.
Kautz, M. Carpenter, M. Zweben, G. Davis, and B.
Daun, “The Space Shuttle Ground Processing System,”
in Intelligent Scheduling, Morgan Kaufman, San
Francisco, 1994.

[13] E. Biefeld and L. Cooper, “Bottleneck
Identification Using Process Chronologies,”
Proceedings of the 1991 International Joint
Conference on Artificial Intelligence, Sydney,
Australia, 1991.

[14] S. Smith, “OPIS: A Methodology and
Architecture for Reactive Scheduling,” in Intelligent
Scheduling, Morgan Kaufman, San Francisco, 1994.

Gregg Rabideau is a
Member of the Technical
Staff in the Artificial
Intelligence Group at the
Jet Propulsion
Laboratory, California
Institute of Technology.
His main focus is in
research and development of planning and
scheduling systems for automated spacecraft
commanding. Projects include planning and
scheduling for the first deep-space mission of
NASA’s New Millennium Program, and for
design trades analysis for the Pluto Express
project. Gregg holds both a B.S. and M.S.
degree in Computer Science from the
University of Illinois where he specialized in
Artificial Intelligence.

Steve Chien is Technical
Group Supervisor of the
Artificial Intelligence
Group of the Jet
Propulsion Laboratory,
California Institute of
Technology where he
leads efforts in research
and development of automated planning and
scheduling systems. He is also an adjunct
assistant professor in the Department of
Computer Science at the University of
Southern California. He holds B.S., M.S., and
Ph.D. degrees in Computer Science from the
University of Illinois. His research interests
are in the areas of planning and scheduling,
operations research, and machine learning.

Tobias Mann was born
in Spokane, Washington
and is currently an
undergraduate at the
University of Washington
in both the Computer
Science and Philosophy
departments. He has a
wife and a two-year old son. His interests
include planning and scheduling, machine
learning, bicycling, and really good coffee.

William “Curt” Eggemeyer graduated from
Washington University in St. Louis with a BA
majoring in geology. In 1978, he became a
JPL employee and began working on the
Voyager project as a spacecraft sequence
engineer. He demonstrated the applicability of
utilizing artificial intelligence (AI) techniques
to the sequence process with the generation of
Voyager Uranus encounter sequences with a
program called DEVISER, developed by
Steven Vere, in 1983-1984. He codeveloped a
prototype, Plan-IT, further advancing
sequencing software tool concepts. From
1991-1992, he reworked Plan-IT into a more
capable an robust sequencing tool, called
Plan-IT-2, that is presently being used by
DATA-CHASER, Galileo, and Mars
Pathfinder projects.

Jason Willis is a
currently pursuing a
Master's Degree in
Aerospace Engineering
specializing in spacecraft
systems from the
University of Colorado
Boulder, where he also
received his B.S. in
Aerospace engineering. He has worked at the
Colorado Space Grant College for the past
three years first as Electrical Integration
Team Lead on the ESCAPE II shuttle payload
the was launched on STS-66. He is currently

the hardware systems engineer for the DATA-
CHASER project.

Sam Siewert is a
graduate research
assistant with Colorado
Space Grant College. He
is working on a Ph.D. in
Computer Science at the
University of Colorado
Boulder where he
received his M.S. in Computer Science in
1993. He received his B.S. in Aerospace
Engineering from the University of Notre
Dame in 1989, worked three years for
McDonnell-Douglas Astronautics Corporation
in Guidance, Navigation and Control
developing simulation, space environment
models, and guidance systems software for the
Space Station and the Aeroassist Flight
Experiment. During that time, he also worked
for McDonnell-Douglas at Johnson Space
Center in the Shuttle Mission Control Center,
developing shuttle ascent and entry
monitoring and cockpit avionics visualization
software, before returning to graduate school.

Peter Stone is a Ph.D.
candidate in Computer
Science at Carnegie
Mellon University
(CMU). He completed his
undergraduate education
in Mathematics with a
concentration in
Computer Science at the University of
Chicago in 1993. His interests are in the areas
of multiagent systems, collaborative and
adversarial machine learning, and planning,
especially in multiagent, real-time
environments.

